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The bimolecular ionization of photoexcited molecules is theoretically investigated assuming the light pumping
of moderate intensity is either instantaneous or permanent. The kinetics of energy quenching and ion-radical
accumulation and recombination afterδ-pulse excitation are studied beyond the rate concept, in the framework
of Integral Encounter Theory (IET). The results are compared with those obtained within extended Unified
Theory (UT), contact and Markovian approximations, and a widely accepted exponential model. When there
is a shortage of acceptors the theory becomes nonlinear and discloses the striking effect of electron-transfer
saturation. In such conditions and under permanent illumination IET is the sole formalism appropriate for a
full time-scale (non-Markovian) description of system relaxation. The original program for solving nonlinear
IET equations for particle concentrations was developed and first used to calculate the kinetics of relaxation
to equilibrium and to a stationary regime. The non-Markovian corrections to the quantum yields of fluorescence
and charge separation obtained numerically are in good correspondence with analytic estimates of these
quantities.

I. Introduction

In the past decade of the century theoretical photochemistry
experienced a real revolution as primitive models were replaced
by fundamental and self-consistent theories of transfer reactions
activated by light pumping.1-10 There comes a time when
different approaches should be compared between themselves
to find out what and where is more powerful and accurate. Such
an assessment has been made already for intermolecular energy
transfer after instantaneous excitation.11-14 Here we consider a
more complex energy quenching mechanism and not only after
instantaneous excitation but during permanent illumination as
well. The latter has not been the focus of attention so far because
only a few approaches are able to provide a non-Markovian
description of the nonlinear response of a system to stationary
pumping.

Energy quenching is often carried out by charge transfer from
an excited electron donorD* to an electron acceptorA,
according to the multi-stage reaction scheme:

The forward electron-transfer ends either by backward transfer
to the ground state in the geminate ion pair [D+...A-] or by ion
separation and subsequent bimolecular charge recombination
in the bulk involving free ionsD+ andA-. The recombination

completes the cycle with nonexcited productD, making possible
a stationary regime under permanent excitationD f D*. This
is the self-consistent but oversimplified reaction scheme which
ignores a few important factors of the process: the spin states
of excited particles and ion pairs as well as the exciplex (contact
ion pair) formation before or after charge separation. Both
factors were recently included into extended reaction scheme
and thoroughly investigated within Unified Theory.8-10 How-
ever, for our present goal we need as simple scheme as possible
to compare the different approaches which usually do not
account for additional complications. The scheme (1.1) is the
simplest one which allows such a comparison.

A number of time-resolved experiments have been done using
very short light pulses considered as instantaneous. Under such
idealization the rate of excitation,I(t), is represented by the
δ-pulse:

where γ ) N*(0)/N0 is a fraction of the excited molecules
immediately after the pulse (N* ≡ [D*], and N0 is the total
concentration of donor molecules in solution). When this fraction
is rather small, the concentration of free ions which escape
geminate recombination is also small. Their bimolecular re-
combination in the bulk, whose rate is quadratic inN+ ≡ [D+]
) [A-] ≡ A-, is much slower than the preceding stage of ion
accumulation and separation. This geminate stage was actually
the subject of the original Unified Theory (UT), which
completely ignored the bulk recombination.15,16Although valid
in a limited time range, UT was nevertheless very successful
in calculating the kinetics of ion accumulation, geminate
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recombination, and the free ion quantum yield. UT was
successfully applied to a number of different phenomena after
inclusion into consideration the spin states of excitations and
ion pairs, inter-system crossing, and exciplex formation in
magnetic field (see recent review6). The subsequent bimolecular
recombination in the bulk was also taken into consideration in
a properly extended unified theory (EUT).17

An essential limitation of original UT as well as EUT is the
assumption that acceptors are present in such an excess that
their concentrationA ≡ [A] remains almost constant, ap-
proximately equal to its initial valuec. This is possible if their
number is not really exhausted due to partial ionization, that is
under the condition

In what follows we will eliminate this restriction and account
for expendable neutral acceptors whose concentration,A(t),
decreases in the course of ionization. However, even extended
in this way the unified theory is still somewhat limited.

It has been stressed already a few times that UT is not suitable
for consideration of the system response to pulses of finite
duration, especially for rather long or even infinitely long
(permanent) excitation, represented byú-pulse:18-20

The pumping termIN0 cannot be incorporated in any non-
Markovian rate theory containing time-dependent rate coef-
ficients.21,22Fortunately, there is an alternative when acceptors
are very much in excess, so thatA(t) ≡ [A] ) c does not change
over time. In this particular case the UT equations are linear in
concentrations and their solution can be employed to calculate
the system response to a pulse of arbitrary shape,I(t). In fact,
N*( t) can be obtained from the well-known convolution recipe
generalized for arbitrary strong pumping in refs 3 and 20. We
will show here that the same can be done for ion accumulation/
recombination kinetics,N+(t), as well. However, the system
response to a light pulse of nonzero duration is unattainable
for the non-Markovian rate theory, if there is a deficiency of
acceptors. In this case the second-order kinetic equations are
essentially nonlinear due to the expenditure of neutral electron
acceptors and the convolution recipe is inapplicable.

On the contrary, Integral Encounter Theory (IET) elaborated
about 20 years ago in a few Russian works24,25 does not
discriminate between linear and nonlinear problems. This is a
kind of memory function formalism applied to the chemical
kinetics of bimolecular reactions in dilute solutions. The additive
inclusion of the pumping termIN0 into the IET equation for
N* provides the standard way for solving these problems
involving arbitrary pulse shape.7,18 The effect of nonlinearity
increases with the intensity of light pumping becauseN*
eventually grows to the point that inequality (eq 1.3) no longer
holds. This leads to a saturation of the electron transfer due to
a lack of neutral acceptors of electron whenA , c. This is in
essence a Markovian effect accessible to a largely simplified
Markovian version of the encounter theory that will be examined
in line with EUT and IET.

Besides electron-transfer saturation, there is also an essentially
non-Markovian effect of strong light pumping. The latter affects
the kernels of integral terms in IET equations, changing the

Stern-Volmer constant of fluorescence, when either 1/τ or I0

is greater than 1/τd. Hereτ is the lifetime of excited reactant
while τd ) σ2/D is the encounter time determined by the closest
approach distanceσ and the encounter diffusion coefficientD.20

To study electron-transfer saturation in a pure form, we restrict
ourselves to a moderate light intensity, assuming

This assumption ensures thatD* is not saturated, i.e.,N* , N0

for any relationship betweenN* and c.
The system response to aδ-pulse can be described not only

within encounter theories, but also with their contact and
Markovian analogues, as well as with an Exponential Model
(EM). The latter is questionable but very popular among
experimentalists. To make the comparison of the theories the
most favorable for contact approximation, we take as input data
the exponential rates of the distant-dependent forward and
backward electron transfer:26

where σ is the closest approach distance. According to the
classification given in ref 26 both rates are exponential in the
rather rare situation when the free energies of ionization and
recombination are so small that both the forward and backward
transfer proceed in the Marcus normal region. Only “normal”
transfer at smallL andl may be considered as contact. Otherwise
neither the contact approximation nor the exponential model is
acceptable from the very beginning. We will use the rates (eq
1.6) in all theories of distant transfer and define through them
all the parameters of the rest of the approaches.

Time-resolved experiments afterδ-pulse aim to study the
geminate recombination of ion pairs. They are usually done at
relatively fast excitation decay so that charge transfer fromD*
to A is essentially over before recombination begins. Therefore,
the comparison of different theories of initial charge separation
is made here at rather short decay time. The same is true
regarding the study of the kinetics of the approach to the
stationary regime under action of aú-pulse. On the contrary,
the effect of electron-transfer saturation is better seen at longer
times when there is no difference between the Markovian and
non-Markovian theories. The last two problems are studied here
for the first time.

The outline of this paper is as follows. In the next section
we reproduce the original UT that will be extended and
generalized later. In section III the IET formalism is applied to
the reaction scheme (eq 1.1) as in ref 20 and slightly simplified
in accordance with limitation established by eq 1.5. In section
IV the system response to aδ-pulse is considered for each of
the available theories. There the saturation of energy quenching
due to electron transfer is demonstrated. In section V we turn
to a description of the system response toú-pulse. There we
generalize UT to determine the excitation decay as well as ion
pair accumulation/recombination by a convolution recipe. The
latter is valid when the electron acceptors are really in great
excess. If the concentration is not large, only IET provides a
valid description of the non-Markovian kinetics of approach to
the stationary regime. In the conclusion, the importance of non-
Markovian effects in kinetic and stationary phenomena will be
inspected.

II. Unified Theory of Photochemical Charge Separation

If the light excitation is instantaneous and weak, the bimo-
lecular charge recombination in a bulk can be ignored during a

N*(0) ) γN0 , c (1.3)

I0 , 1/τ j 1/τd (1.5)

WI(r) ) Wi exp[-2(r - σ)/L],

WR(r) ) Wr exp[-2(r - σ)/l] (1.6)
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limited time interval. Nonetheless, this initial interval can exceed
the larger of two times: the lifetime of the excited donorτ and
the diffusional encounter timeτd. Within such an interval the
survival probability of the excited state,P*( t) ) N*( t)/N*(0),
and that of ions,P+ ) N+/N*(0) obey the set of original UT
equations first derived in refs 15 and 16:

The time-dependent “reaction constant”

and ion pair distributionm(r,t) are expressed in UT through
the solutions of auxiliary differential equations

wheren(r,0) ) 1, m(r,0) ) 0 and the operators

represent the encounter diffusion in neutral and charged pairs
[D*...A] and [D+...A-], taking into account the Onsager radius
rc for Coulomb well between ions.

The set of UT equations above describes only geminate ion
pair accumulation/recombination and separation. This is an
initial stage of the system response toδ-pulse excitation that
proceeds in a restricted time interval. However, within this
interval the survival probability of ions approaches the plateau
which is the free carriers quantum yieldφ. The latter can be
represented in the following form:26,27

Hereæj is the charge separation quantum yield whileψ is the
quantum yield of complete ionization, simply related to the
fluorescence quantum yield:28,29

The geminate stage of ion accumulation/recombination is
followed by a bimolecular recombination in the bulk, which is
much slower when excitation is weak. The bulk recombination
has been incorporated in Extended Unified Theory (EUT) which
is formulated in terms of absolute concentrations of excited
donors and ions,N* and N+, instead of their survival prob-
abilities,P* and P+.17

III. Integral Encounter Theory for Moderate Pumping

At light intensity limited by inequality (1.5), we can obtain
from the general theory published in ref 20 the reduced set of
IET equations:

whereA(t) ) c - N+(t). All kernels are defined through their
Laplace transformations, denoted by tilde:

The auxiliary pair distributions obey the following set of
equations:

The initial conditions for these functions are

The bimolecular ionization producing the energy quenching
and primary charge separation is represented by two integral
terms in eqs 3.1a and 3.1b, containing kernelR*. The integral
term with kernelR† accounts for geminate recombination of
the created ion pairs. The final bimolecular recombination of
free ions in the bulk is represented by a kernelR‡, from the last
term in eq 3.1b, which is quadratic in ion concentration. If one
employs such a weakδ-pulse that the initial concentrations of
excited donors satisfiesN*(0) ) γN0 , c then acceptors are in
great excess from the very beginning. Under such a condition
the bimolecular recombination does not play any role in a
relatively long time interval after excitation and can be
neglected. Then one obtains the reduced version of IET similar
to the original UT which also ignores the recombination in a
bulk.

Neglect of bulk recombination is absolutely impossible if the
illumination is permanent and the stationary concentrations of
excited donors and ions,Ns

/ andNs
+, have to be obtained. The

former determine the fluorescence quantum yield:20

while the latter contribute to the stationary photoconductivity:

wheree is the charge of free carriers whose mobility isu.
These two quantities,Ns

+ andη, are the main ones pertain-
ing to the free ion production and energy quenching which are
often available for analytic study. The kinetic information about
the system response toδ-pulse usually comes from numerical
investigations of IET equations partially reduced in Unified
Theory to a differential form. For this adopted theory very
powerful programs were elaborated30,31 and used a number of
times.32 Here we develop a new program for solving IET eqs

Ṗ* ) -kI(t)cP* - P*
τ

P*(0) ) 1 (2.1a)

Ṗ+ ) c∫ ∂m(r,t)
∂t

d3r P+(0) ) 0 (2.1b)

kI(t) ) ∫WI(r)n(r,t)d3r

∂n
∂t

) -WIn + L̂1n (2.2a)

∂m
∂t

) -WRm + L̂2m + WInP* (2.2b)

L̂1 ) D
1

r2

∂

∂r
r2 ∂

∂r
and L̂2 ) D̃

1

r2

∂

∂r
r2erc/r ∂

∂r
e-rc/r

φ ) P+(∞) ) ψæj (2.3)

η ) ∫0

∞
P*( t)dt/τ ) 1 - ψ (2.4)

Ṅ* ) - ∫0

t
R*( t - t′)N*( t′)A(t′)dt′ - N*

τ
+ IN0 (3.1a)

Ṅ+ ) ∫0

t
[R*( t - t′) -

R†(t - t′)]N*( t′)A(t′)dt′ - ∫0

t
R‡(t - t′)[N+(t′)]2dt′ (3.1b)

R̃*(s) ) (s + 1/τ)∫d3rWI(r)ν̃1(F,σ) (3.2a)

R̃†(s) ) (s + 1/τ)∫d3rWR(r)µ̃(r,s) (3.2b)

R̃‡(s) ) s∫d3rWR(r)ν̃2(r,s) (3.2c)

[ ∂∂t
- L̂1 + WI(r) + 1/τ]ν1(r,t) ) 0 (3.3a)

[ ∂∂t
- L̂2 + WR(r)]ν2(r,t) ) 0 (3.3b)

[ ∂∂t
- L̂2 + WR(r)]µ(r,t) ) WIν1 (3.3c)

ν1(r,0) ) ν2(r,0) ) 1, µ(r,0) ) 0

η )
Ns

/

I0τN0
(3.4)

σ ) euNs
+ (3.5)
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3.1, 3.2, 3.3 and gaining for the first time the system response
not only toδ-pulses, but to permanent excitation withú-pulse
as well.

IV. Relaxation after δ-Pulse

The system response to a very short pulse excitation is a
standard problem treated many times by different methods. In
what follows we will compare some of these methods we are
going to compare below by the example of reaction 1.1.

After instantaneous excitation (eq 1.2) the last term in eq
3.1a is zero and can be omitted, provided the initial conditions
are set to the following:

The remaining homogeneous equations can be now reduced to
a semi-differential form inherent in UT using standard procedure
recommended in classical works33 and employed a number of
times:19,25,34

where we took into account thatA(t) + N+(t) ) c ) constant,
and the time-dependent rate constant for ionization and recom-
bination are

Here the auxiliary pair distributions obey the diffusional
equations

Here we accounted for the Coulomb attraction between ions
with Onsager’s radiusrc. The same should be done in an
equation that governs the time behavior of charge distribution
in a pair:

Initially p(r,0) ) 0, but ions appear due to a pumping term on
the right-hand side of this equation.

One of the most widespread models of reactions in solutions
is known as contact approximation. It assumes the reaction to
take place only at a contact distanceσ with kinetic rate constant
k0 ) ∫WI(r)d3r for ionization and k0′ ) ∫WR(r)d3r for
recombination. Under this assumption the charge-transfer rates
(eq 1.6) can be substituted by their contact analogues:

To make use of the contact approximation let us first substitute
∂p/∂t from eq 4.4 into eq 4.1b and integrate it overr. In this

way we arrive to the equation

Using here the contactWR(r) from eq 4.5 and assuming a great
excess of acceptors we obtain

wherep(σ,t) should be found from the solution of the contact
analogue of eq (4.4):

The general solution of this equation expressed through its Green
function,GR(r,r′,t), takes the form

Here we took into account, that ionization is contact as in eq
4.5. In this approximationkI ) k0n(σ,t), wheren(r,t) obeys the
contact equation equivalent to eq 2.2a:

The contact solution of the problem given by eqs 4.7 and 4.9 is
very suitable for analytic investigation because the properties
of the Green function of geminate recombination,GR(r,r′,t), are
studied in great detail in a few fundamental works.35,36 In
particular, it is known that contact approximation does not work
in a static limit, but is a reasonable approximation for moderate
and fast diffusion, provided that the space dependence of the
transfer rate is really exponential and sharp.37 Here we should
only add that in the contact approximation the static stage is
also missed in bimolecular ionization. Therefore the initial rate
of this process is significantly underestimated and the quantum
yield of contact ionization should be less than that in theories
of remote transfer (UT or IET), especially for the case of short
excitation lifetime.

Even more popular than the contact approximation, until
recently was the so-called exponential model (EM) of ion pair
recombination. In this model the real diffusion from the reaction
zone is replaced by a hopping escape from it with a rateksep.
On the other hand, EM does not assume recombination to be
contact, but suggests that it takes place with a uniform back
electron-transfer ratek-et within the reaction sphere of the
volume V ) 4πσ3/3. As a result eq 4.4 is replaced by the
following one:

where the used parameters of EM are simply related to those
of the contact approximation:36

N*(0) ) γN0 N+(0) ) 0

dN*( t)
dt

) -kI(t)N*( t)A(t) -
N*( t)

τ
(4.1a)

dN+(t)
dt

) ∫ ∂

∂t
p(r,t)d3r - kR(t)[N+(t)]2 ) -

dA(t)
dt

(4.1b)

kI(t) ) ∫d3rwi(r)n(r,t), kR(t) ) ∫d3rWR(r)n′(r,t) (4.2)

[ ∂

∂t
+ WI(r) - D

1

r2

∂

∂r
r2 ∂

∂r]n(r,t) ) 0 n(r,0) ) 1 (4.3a)

[ ∂

∂t
+ WR(r) - D̃

1

r2

∂

∂r
r2erc/r ∂

∂r
e-rc/r]n′(r,t) ) 0

n′(r,0) ) 1 (4.3b)

[ ∂

∂t
+ WR(r) - D̃

1

r2

∂

∂r
r2erc/r ∂

∂r
e-rc/r]p(r,t) )

WI(r)n(r,t)N*( t)A(t) (4.4)

WI(r) )
k0

4πσ2
δ(r - σ), WR(r) )

k0′

4πσ2
δ(r - σ) (4.5)

dN+(t)
dt

)

kI(t)N*( t)A(t) - ∫WR(r)p(r,t)d3r - kR(t)[N+(t)]2 (4.6)

dN+(t)
dt

) ckI(t)N*( t) - k0′p(σ,t) - kR(t)[N+(t)]2 (4.7)

∂p(r,t)
∂t

) WI(r)n(r,t)cN*( t) + D̃
1

r2

∂

∂r
r2erc/r ∂

∂r
e-rc/rp(r,t),

4πσ2∂p
∂r

|r)σ ) k0′p(σ,t) (4.8)

p(r,t) ) ck0 ∫0

t
GR(r,σ,t - t′)n(σ,t′)N*( t′)dt′ (4.9)

n̆ ) L̂1n, 4πσ2∂n
∂r

|r)σ ) k0n(σ,t)

∂p(r,t)
∂t

) WI(r)n(r,t)N*( t)A(t) - ksepp(r,t) - k-etp(r,t)

r e σ (4.10)

ksep)
3rcD̃

σ3[erc/σ - 1]
k0′ ) k-etV (4.11)
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In addition, EM assumes that ionization also takes place only
within the same reaction sphere as recombination, that isWI )
0 atr > σ. Therefore, integrating eq 4.10 over space we obtain
a similar equation for the total number of ions inside the reaction
sphere,pc ) p(σ,t)V:

This equation should be supplemented by eq 4.7 withk0′ taken
from eq 4.11:

Linear equations of this sort (withAs ≡ c) have been used a
number of times,38-41 but in their Markovian version when the
time-dependent rate constants,kI(t) and kR(t), are substituted
by their asymptotic (stationary) values:

wherens(r) ) n(r,∞) andns′(r) ) n′(r,∞).
There is also an important difference in the way in which

the bimolecular recombination is accounted for here, in eq 4.13,
and in ref 39. There it is decomposed in two stages: diffusional
formation of an ion pair with a rate constant 4πσD̃ and
subsequent geminate recombination inside the reaction sphere
with a conventional EM ratek-et. Under these conditions there
is an upper limit for the rate constant of the bimolecular
recombination: kr e 4πσD̃, that was actually exceeded in
experiments done in ref 39. Authors considered this fact as a
reason for the suggestion that this is an additional reaction
channel (proton transfer) which facilitates ion recombination.
In eqs 4.12 and 4.13 we did not account for proton transfer in
the ion pair, although it can be done in the same way as in refs
38 and 39. There is no need to complicate the reaction scheme.
The stationary values ofkr represented as 4πRQD̃ can signifi-
cantly exceed the contact estimate of the diffusional rate
constant, because the effective radiusRQ is in general larger
thanσ. The effective radius for ionization was experimentally
shown to be twice as large at high solution viscosity.42 For
recombination it can be even larger, reaching the value of the
Onsager radiusrc in solvents of low polarity.43 From the
theoretical point of view there is also no reason to discriminate
between the similar processes of forward and backward electron
transfer, which can be treated uniformly as distant bimolecular
reactions.

To avoid further discussion of this point we restrict ourselves
to the initial geminate stage of the reaction, neglecting bimo-
lecular recombination during this time interval. Then all EM
theories become identical, including that proposed by the authors
of ref 39. Summing their two equations for charges inside and
outside the reaction sphere, we get our equation for the total
ion concentrationN+ at kI ) ki andkR ) kr ) 0. With a large
excess of acceptors the full set of EM equations can be rewritten
for the survival probabilities of excitations and ions:

whereP*(0) ) 1, P+(0) ) pc(0) ) 0 and

They were really useful for the rough interpretation of some
experimental data,40,41but in principle EM is much worse than
even the contact approximation. The escape from the reaction
zone and more from the Coulomb well, does not proceed by a
single jump described as an exponential (rate) process even if
ksepis given a reasonable estimate (eq 4.11). This simplification
ignores all subsequent re-contacts and an essential nonexpo-
nentiality of the whole geminate process.36 It was shown a
number of times that EM fails to describe not only long time
kinetics,41 but also the free energy dependence of geminate
recombination26 and magnetic field effects in the charge
separation quantum yield.10 This is a linear unified theory that
was actually used in all aforementioned works to solve these
and other problems.6

Equations 4.1-4.4 constitute the formal basis of the extended
unified theory. Unlike the original theory, represented by the
set (eq 2.1)-(eq 2.2), extended UT accounts for nonlinear
effects, including the bimolecular recombination of ions. Only
one step remains to be taken to go from UT to its simplified,
Markovian version which describes the asymptotic relaxation
of the system long after the pulse. Using the Green-function of
eq 4.4,GR(r,r′,t), one can make in this time limit the following
approximation:

wherens(r′) ) n(r′,∞) and

is the survival probability of ions initially separated by a distance
r′. The Markovian charge separation quantum yield

is averaged over the initial distribution of ions calculated in
the Markovian approximation:

Using these results in eq 4.1b we obtain from it and eq 4.1a the
following set of Markovian equations valid for long times:

where the important definition for the rate constant of free carrier
production,k+, is given:

The latter differs from the ionization rate constant by a multiplier
equal to charge separation quantum yieldæj m obtained in the
Markovian approximation. This difference indicates that a

dpc

dt
) kI(t)N*( t)A(t) - (ksep+ k-et)pc (4.12)

dN+(t)
dt

) kI(t)N*( t)A(t) - k-etpc - kR(t)[N+(t)]2 (4.13)

ki ) lim
tf∞

kI(t) ) ∫WI(r)ns(r)d
3r,

kr ) lim
tf∞

kR(t) ) ∫WR(r)ns′(r)d
3r (4.14)

dP*
dt

) -ckiP* - P*
τ

,
dP+

dt
) ckiP* - k-etpc (4.15)

dpc

dt
) ckiP* - (ksep+ k-et)pc (4.16)

∫p(r,t)d3r ) ∫0

t ∫d3r′ ∫ GR(r,r′,t - t′)d3rWI(r′)n(r′,t′) ×
N*( t′)A(t′)dt′ ≈ ∫d3r′æ(r′)WI(r′)ns(r′) ∫0

t
N*( t′)A(t′)dt′ )

kiæj m∫0

t
N*( t′)A(t′)dt′ (4.17)

æ(r′) ) ∫ GR(r,r′,∞)d3r (4.18)

æj m ) ∫æ(r′)fm(r′)d3r′ (4.19)

fm(r) )
WI(r)ns(r)

∫WI(r′)ns(r′)d3r′
(4.20)

dN*( t)
dt

) -kiN*( t)A(t) -
N*( t)

τ
(4.21a)

dN+(t)
dt

) k+N*( t)A(t) - kr[N
+(t)]2 ) -

dA(t)
dt

(4.21b)

k+ ) kiæj m (4.22)
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definite part of photogenerated ions react in a geminate ion pair,
so that the fraction of those which survive geminate recombina-
tion and become free is less than their total amount:æj m < 1.

Unfortunately, the Markovian theory has a number of
drawbacks when applied to an essentially non-Markovian
problem like that in hand. It is well-known that the transforma-
tion of IET into UT is sometimes an improvement (see ref 11
and references therein). On the contrary, reduction of UT to its
Markovian version deprives UT of all its advantages and
misrepresents the kinetics of energy quenching and charge
accumulation at shortτ. In Figure 1 we compare the kinetics
of excited-state quenching in all these theories. The results of
UT, known to be exact in the case of immobileD* and an
independently moving point particlesA, is taken as a primary
standard. IET well reproduces the initial quenching, including
its nonstationary stage, but deviates from the long time
asymptotics of UT. This is due to a false tail inherent in IET
that can be removed if Modified Encounter Theory (MET) is
used instead of IET.1 We will not make this modification here,
but simply restrict our consideration to the time interval where
the difference between UT and IET is not pronounced.

If the interval is short enough that the bimolecular recom-
bination can be neglected, then the kinetics of ion accumulation
and their geminate recombination can be expressed in terms of
the survival probabilities,P+(t), available in all theories at a
large excess of acceptors. In Figure 2 we show almost the
identical results obtained with IET and UT which demonstrate
the well-pronounced maximum. According to ref 15, this
maximum appears only in the course of fast ionization whenτ
is shorter than the characteristic time of subsequent geminate
recombination.

In the contact approximation the results are qualitatively the
same but the ionization quantum yieldψ is half as much as in
distant theories (see Table 1). It was expected because at such
a shortτ a significant fraction of ions are produced during the
initial static ionization which is missed in the contact ap-
proximation.

Neither the maximum nor the descending branches of the
upper curves, representing geminate recombination, are repro-
duced in Markovian theory. It predicts the monotonic ion

accumulation and still further decrease in the ionization quantum
yield ψ. This is because the Markovian theory cannot account
for static and the subsequent nonstationary electron transfer.
These are faster than the stationary (Markovian) transfer when
ionization is under diffusional control. EM is a bit better in this
respect. As a non-Markovian theory it accounts at least for static
ionization and qualitatively reproduces the maximum in the
charge accumulation kinetics. However, the subsequent geminate
recombination develops exponentially in the EM because in this
model the kinematics of ion separation is oversimplified. It is
not compatible with the actual diffusional motion of ions
responsible for their numerous re-contacts and the power
dependence of long time separation kinetics studied in a number
of works.36,37,41

It is interesting that in the Markovian theory, the charge
separation quantum yieldæj is largest when the lifetime is as
short as in Figure 2 (τ ) 0.5 ns). As was shown in ref 11, in
the short time limit the initial charge distributions in UT and
IET are practically the same, but significantly different from a
Markovian one. Due to the ignorance of nonstationary ioniza-
tion, the Markovian density is smaller or even zero near the
contact, where the recombination is most probable. Therefore
in the framework of Markovian theory the ions have greater
survival probability. On the contrary, in EM they are initially
entirely inside the reaction zone where there are minimum
chances to escape.

In conclusion, let us consider the opposite case when
deficiency of acceptors leads to electron-transfer saturation. This
case is more likely at largeτ. In the limit of infinite τ all the
theories here discussed, Markovian theory including, become
equivalent. As seen from Figure 3 saturation results whenN*( t)

Figure 1. Semilogarithmic plot of quenching kinetics at a large excess
of acceptors (N*(0) ) 10-4 M , 10-2 M ) c) calculated with IET
(thick line), UT considered as an exact (thin line), and Markovian theory
(dashed line). The remaining of parameters are the following:σ ) 6
Å, Wi ) 1000 ns-1, D ) 1.2 × 10-6 cm2/s, L ) 1.0 Å, ki ) 1271
Å3/ns. The initial nonstationary quenching is shown in the insert.

Figure 2. Ion survival probability as a function of time atτ ) 0.5 ns
with great excess of acceptors. In line with GUT, IET, and Markovian
theory, the contact approximation (dashed-dotted line) and exponential
model with ksep ) k-et ) 1.0 ns-1 (dotted line) are also shown. The
horizontal thick lines indicate the free ion quantum yieldφ for upper
curves. The concentrations and ionization parameters are the same as
in Figure 1, whileWr ) 3.4 ns-1, D̃ ) D ) 1.2 × 10-6 cm2/s, k+ )
784 Å3/ns, andkr ) 486 Å3/ns.

TABLE 1: Quantum Yields of Ionization ( ψ), Charge
Separation (æj ), and Free Ion Production (O ) ψæj )

theories ψ × 103 æj φ × 103

UT 21.7 0.59 12.8
IET 21.5 0.59 12.7
Contact 9.3 0.50 4.6
Markovian 3.7 0.61 2.3
EM 3.7 0.50 1.9
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is greater thanA(t) and is removed whenN*( t) becomes smaller
thanA ≈ c. Within the saturation region there are two stages:
the initial one, when ions are accumulated and the subsequent
quasi-stationary stage, when their concentration remains ap-
proximately constant. Initially, the concentration of excited
molecules goes down approximately to the level shown in the
insert by a dashed-dotted line, which is obtained by ignoring
the bimolecular recombination. This level does not equalN*-
(0) - c as one might expect, but is much lower. The reason is
that only aæj fraction of c ions produced at first transfer are
separated. The rest of them recombine, restoring thec(1 - æj )
neutral particles which are ready to accept electrons once again.
Hence, in the absence of bimolecular recombination the
concentration of excitations approaches the following limit:

where each term of the expansion accounts for first, second,
etc., electron transfer to neutral acceptors. In the next stage
bimolecular recombination is important and maintains a quasi-
stationary concentration of charged and neutral acceptors. This
stage continues until the concentrations of excited donors and
acceptors become approximately equal. Then the former disap-
pear while the latter are totally discharged.

V. Evolution during ú-Pulse

If electron acceptors are in great excess, one can express the
relaxation of the excited-state populationN*( t) during and after
arbitrary light excitation through the survival probability of
excited donors afterδ-pulse,P*( t), that was introduced in section
II. As is known,28,29 N*( t) is simply given by the convolution
of P*( t) with the time-dependent irradiation intensityI(t):

Equation 5.1 is just a consequence of linear response theory
applied to our reaction. The physical interpretation of it is as
follows. Let us consider the system response to an arbitrary
pulse as a sequence of responses resulting from absorption of
separate photons.29 If the time evolution after each excitation
is the same due to the linearity of the problem, one can sum
them up to get the total response to the original pulse. In the
case ofú-pulse eq 5.1 simplifies to

Extension of this procedure to the ion relaxationN+(t) is not as
straightforward, if the bulk recombination is not negligible. The
latter makes the problem nonlinear:

The source termΠ(t) of the above equation is in fact linear in
I0, if acceptors are present in great excess. Therefore it can be
obtained by application of the same convolution procedure as
in eq 5.2:

Finally for ion accumulation we have the following equation:

Equations 5.2 and 5.5 together with the original UT eqs 2.1
and 2.2 constitute the formal basis of the Generalized Unified
Theory (GUT). The latter can be used to find the system
response toú-pulse, provided the acceptor concentration is
sufficiently large. In this way one can obtain the accumulation
kinetics of excitations and free ions and their stationary
concentrations:

where the free ion quantum yieldφ was defined in eq 2.3.
Substituting Ns

/ into eq 3.4, we confirm the conventional
definition of the fluorescence quantum yield (eq 2.4) while
substitution ofNs

+ into eq 3.5 gives the conductivity as a
function of light strength and electron-transfer parameters.

Figure 4 illustrates the kinetics of excitation and ion ac-
cumulation obtained from the numerical solution of the GUT
eqs 5.2 and 5.5 using our standard programs for calculatingP*
and P+. For comparison, the same result was obtained from
the IET equations of section III, with a large excess of electron
acceptors. The difference between the results is not essential
but becomes larger whenc increases. This difference is in favor
of GUT because this theory as well as UT account for higher
order corrections inc which are not accounted for in IET.

These non-Markovian results can be compared with those
obtained with Markovian theory. The light pumping can be
incorporated in its eqs 4.21 as an additive term, as in IET:

whereA ) c - N+. The difference seen in Figure 4 between
Markovian and other results is due to the usage of stationary
parameterski and æj m which do not account for the initial

Figure 3. Decay of excited donor concentration (solid line) ac-
companied by ion accumulation/recombination (dashed line) and
depletion of neutral acceptors (dotted line) atWi ) Wr ) 1000.0 ns-1

andτ ) ∞ (the remaining parameters are the same as in the previous
figures). The shortest stage of electron-transfer saturation due to
deficiency of acceptors is shown in the insert in comparison to the
excitation decay without bimolecular recombination in the bulk
(dashed-dotted line). The charge separation quantum yieldæj ) 6.2%,
N*(0) ) 10-2 M, c ) 10-4 M.

N*( t) ) I0N0 ∫0

t
P*(τ)dτ (5.2)

Ṅ+ ) Π(t) - kR(t)(N+)2 (5.3)

Π(t) ) I0N0 ∫0

t
Ṗ+(τ)dτ ) I0N0P

+(t) (5.4)

Ṅ+ ) I0N0P
+(t) - kR(t)(N+)2 (5.5)

N*
s ) I0N0P̃*(0), Ns

+ ) xI0N0φ/kr (5.6)

dN*
dt

) -kiN*A - N*
τ

+ I0N0 (5.7a)

dN+

dt
) kiæj mN*A - kr(N

+)2 ) - dA
dt

(5.7b) (5.7b)

N*(∞) ) N*(0) - c - c(1 - æj ) - c(1 - æj )2 - ... )

N*(0) - c
æj

(4.23)

N*( t) ) N0 ∫0

t
I(t - τ)P*(τ)dτ (5.1)
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nonstationary development of the process. This difference exists
at any finite lifetime and is larger the shorterτ.

At short lifetime the difference is seen even atc smaller than
Ns

/, when electron transfer is saturated. Since this situation is
essentially nonlinear, GUT does not hold, so that only IET
provides a proper non-Markovian solution. However, the
nonlinear effect of acceptor depletion is accounted for in
Markovian theory as well. Using these two theories we estimated
the difference in the non-Markovian and Markovian description
of accumulation kinetics under saturation conditions (Figure 5).
As before, it is larger for charged products than for excitations
and stronger the shorter the lifetimeτ.

A scale of non-Markovian corrections can be easily estimated
in the stationary regime available for analytic investigation. The
stationary solution of eqs 5.7 is trivial:

where according to eq 3.4 we have

which is actually the Stern-Volmer law modified as in ref 30.
An important relationship between the stationary concentration
of neutral acceptorsAs and their total concentrationc is specified
by the cubic equation which follows from the set of eqs 5.7:

Due to such a complex dependenceAs(c) the inverse quantum
yield (eq 5.9) is linear inAs, but not inc (Figure 6). From eq
5.10 one sees that the condition for linearity inc is given by

Otherwise, the depletion of neutral acceptors results in the
quadratic dependence of 1/η on c. This violation of the Stern-
Volmer law cannot be reproduced with GUT which is valid
only if inequality (eq 5.11) holds. Contrary to the Markovian
result the concentration dependence following from eq 2.4 is
linear at smallc (Figure 6).

Unlike GUT, IET has no restrictions of validity at smallc.
The fluorescence quantum yield calculated from the general eq
3.4 by means of IET does not differ qualitatively from the
Markovian result (eq 5.9):

Figure 4. Concentration of excitations (A) and of ions (B) as functions
of time under permanent illumination (I0N0 ) 10-4 M ns-1) and a great
excess of acceptors, as in Figure 1. Thick line, IET; thin line, GUT;
dashed line, Markovian theory. The parameters are the following:τ
) 10 ns,Wi ) Wr ) 1000 ns-1, ki ) 1271 Å3/ns,k+ ) 78.8 Å3/ns,kr

) 1271 Å3/ns. The other parameters are the same as in Figure 1.

Ns
/ )

I0N0τ
1 + kiAsτ

, Ns
+ ) xI0N0ψæj m

kr
(5.8)

Figure 5. Accumulation kinetics of excitations (A) and ions (B) under
the same permanent illumination as in Figure 4, but at a much lower
acceptor concentration, 10-3 M, responsible for the electron-transfer
saturation. Thick line, IET; dashed line, Markovian theory; the
remaining parameters are the same as in the previous figure.

η ) 1
1 + kiAsτ

) 1 - ψ (5.9)

kr(c - As)
2(1 + kiτAs) ) I0N0τkiæj mAs (5.10)

kiæj mNs
/ , krc (5.11)
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However, in this relationship as well as in the corresponding
cubic equation forAs a slightly different parameter

is substituted for the Markovian (stationary) rate constant,ki )
limτf∞κi, while another (recombination) rate constant remains
the same:κr ≡ R̃‡(0) ) kr. Tilde overn indicates the Laplace
transformation of the quantity, which is a solution of eq 4.3a:
ñ(r,s) ) ∫0

∞n(r,t) exp(-st)dt.
Another noticeable difference is between

andæj m ) limτf∞æj IET. The charge separation quantum yield is
averaged in IET over the initial charge distribution, which has
a more appropriate shape than the Markovian distribution given
by eq 4.20:11

However, even this distribution is not quite as good as that
obtained in UT, because the latter accounts for higher order
corrections in the acceptor concentration which are ignored in
IET.11

In Figure 7 we illustrate the difference between two compet-
ing non-Markovian theories, UT and IET, and their Markovian
analogue. Inspecting the Stern-Volmer plot from IET, one can
see that it is nonlinear at low concentrations where the saturation
of electron transfer takes place. The Markovian theory well
reproduces this effect, but for finiteτ it is less accurate than
IET at all values ofc. On the contrary, UT is not good at low
concentrations where it misses the saturation effect. On the other
hand, it is better than the two others at high concentrations
because it reproduces the nonlinear increase ofη-1 with c. This

super-linearity results in the widely recognized concentration
dependence of the Stern-Volmer constant.11,44-46

VI. Markovian versus Non-Markovian Theories

Both the IET and Markovian theory provide the lowest order
approximation for the fluorescence quantum yield with respect
to acceptor concentration. This approximation is the only
limitation of the validity of IET. Due to this limitation it is
unable to describe the long time asymptotics of the system
response to instantaneous excitation and the nonlinearity of the
Stern-Volmer law at high concentrations. On the other hand,
it accounts for the effect of electron-transfer saturation and all
non-Markovian effects, such as nonstationary energy quenching
and geminate charge recombination. They are seen in quenching
kinetics and ion relaxation, as well as in the principal charac-
teristics of the stationary regime,κi andæj , which are different
from their Markovian analogues,ki andæj m. This difference is
significant at short excitation lifetimes,18 especially in nano-
second and picosecond range which is now intensively studied
experimentally. Moreover, there is a non-Markovian effect
arising at higher light intensities, that was not considered in
the present work but highlighted in two others.20,47 It affects
the Stern-Volmer constant and makes it sensitive to light power
at reasonable intensities.

Hence, IET is everywhere preferable to the Markovian theory,
but at a large excess of acceptors it is less accurate than GUT.
Fortunately, this drawback of IET can be easily removed by
MET,1 but this improvement is outside the scope of the present
work.
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